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1. Introduction

In this paper, we present a fairly large number of semiparametric duality
results under a variety of generalized (n, p)-invexity conditions for the fol-
lowing multiobjective fractional programming problem involving nondiffer-
entiable functions:

(P) Minimize (fl(x)"'”Alea(l) fp(x)+||Apx||a(p)>

g1 = IBixllpy” " gp(x) = I1Bpxllpp)

subject to
Gix)+Cjxlley =0, jegq, Hi(x)=0, ker, xeX,

where X is an open convex subset of R” (n-dimensional Euclidean space),
fi.giiep={1,2,...,p},Gj, jeq, and Hy, ker, are real-valued functions
defined on X, for each i € p and each jegq, A;, B;, and C; are, respectively,
€ xn, m; xn, and n; x n matrices, || - lla@), Il - loa), and | - lle¢;) are arbi-
trary norms in R%, R™ and R", respectively, and for each i € p, gi(x) —
| Bix||piy >0 for all x satisfying the constraints of (P). N
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Several classes of static and dynamic optimization problems with multiple
fractional objective functions have been the subject of intense investiga-
tions in the past few years, which have produced a number of sufficiency
and duality results for these problems. Fairly extensive lists of references
pertaining to various aspects of multiobjective fractional programming are
available in [22-25]. For more information about the vast general area of
multiobjective programming, the reader may consult [11, 16, 18, 20].

A close examination of these and other related sources will readily reveal
the fact that so far multiobjective fractional programming problems con-
taining arbitrary norms in their objective functions and constraints have
not been studied in the area of multiobjective programming. In the present
study, we shall formulate several semiparametric dual problems for (P) and
establish numerous duality results under various generalized (n, p)-invexi-
ty conditions. These duality formulations are based on the necessary and
sufficient efficiency criteria presented in [26].

The rest of this paper is organized as follows. In Section 2, we pres-
ent a number of definitions and auxiliary results which will be needed in
the sequel. In Section 3, we consider four duality models with somewhat
limited constraint structures, and prove weak, strong, and strict converse
duality theorems under two sets of conditions. In Section 4, we formu-
late another set of four duality models with much more flexible constraint
structures which allow for a greater variety of generalized (7, p)-invexity
hypotheses under which duality can be established. We continue our discus-
sion of duality in Sections 5 and 6 where we use two partitioning schemes
and construct eight generalized duality models and obtain several duality
results under various generalized (n, p)-invexity assumptions. In fact, each
one of these eight duality models is a family of dual problems for (P)
whose members can easily be identified by appropriate choices of certain
sets and functions. Finally, in Section 7, we summarize our main results
and also point out some further research opportunities.

It is evident that all the duality results obtained for (P) are also appli-
cable, when appropriately specialized, to the following ten classes of prob-
lems with multiple, fractional, and conventional objective functions, which
are particular cases of (P):

(P1) Mil)}anize (i) +AXlaqtys - -+ fr @)+ 1 Apxllagp);

(P2) Minimize S+ lAxlae
xel g1(x) — | Bixllpy’

(P3) Minirﬂyize S1(x) + [ A1xlaq1)s
Xe

where F (assumed to be nonempty) is the feasible set of (P), that is,
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F={xeX:G;x)+Cjxlle =0, jeg, He(x)=0, ker};

(P4)  Minimize ( fi)+ P2 @+ pr>1/2)
g1(x) = {x, Q)27 g, (x) = (x, Q)2
subject to
Gj()+(x, Rjx) 220, jeq, Hi(x)=0, ker, xeX,

where P;, Q;, i€ p, and R;, jeq, are n x n symmetric positive semidefinite
matrices, (1, v) denotes the inner (scalar) product of the v-dimensional vec-
tors u and v, that is, (u,v)=3"_,u;v;, where u; and v; are the ith com-
ponents of u and v, respectively, and for each i € p, g;j(x) — (x, Qix)!/?>>0
for all feasible solutions of (P4); N

(P5) Migli%ﬂze (fl () + (x, PLc) 2 f (0 (x, pr)1/2>;

P x)/2

(P6) Minimize S+, Pix) :
xeG  g1(x) —(x, Q1x)!/2

(P7) Mini%}ize F1(x) + (x, Pix)12,
xXe

where G is the feasible set of (P4), that is,
G={xeX:G;(x)+(x,Rjx)'?<0, jeq,  Hi(x)=0, ker);
(P8) Mini%?ize (f1(x), ... fr(x));
xXe

(P9) Minimize S ;
xeH g1 (x )
(P10) Mini?l}ize f1(x),
xXe

where H={xe X:G;(x) =0, jeq, H(x)=0, ker}.

The problems (P4), (P5), (P6), and (P7) are special cases of (P), (P1),
(P2), and (P3), respectively, which are obtained by choosing | - [l4i, | -
o). i € p, and || - [|e(j), j €, to be the €>-norm | - ||», and defining P; =
AlAi, Qi=B!B;,iep,and R;=C[C;, jeq.

Since in most cases these results can easily be modified and restated for
each one of the above ten problems, we shall not state them explicitly.

Optimization problems containing norms arise naturally in many areas
of the decision sciences, applied mathematics, and engineering. They are
encountered most frequently in facility location problems, approximation
theory, and engineering design. A number of these problems have already
been investigated in the related literature. Similarly, optimization problems
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involving square roots of positive semidefinite quadratic forms have arisen
in stochastic programming, multifacility location problems, and portfolio
selection problems, among others. A fairly extensive list of references per-
taining to several aspects of these two classes of problems is given in [21].

2. Preliminaries

In this section we recall, for convenience of reference, the definitions of cer-
tain classes of generalized convex functions which will be needed in the
sequel. We begin by defining an invex function which has been instrumen-
tal in creating a vast array of interesting and important classes of general-
ized convex functions.

DEFINITION 2.1. Let f be a real-valued differentiable function defined
on X. Then f is said to be n-invex at y if there exists a function 7:X x
X — R”" such that for each x € X,

FE) = M2V, nx, y),

where V f(y)=(3f(y)/dy1, 0f (¥)/8y2, ..., 8f (y)/dy.)" is the gradient of f
at y and the superscript 7 denotes transposition; f is said to be n-invex
on X if the above inequality holds for all x, y € X.

From this definition it is clear that every real-valued differentiable con-
vex function is invex with n(x, y) =x — y. This generalization of the concept
of convexity was originally proposed by Hanson [5] who showed that for a
nonlinear programming problem of the form

Minimize f(x) subject to g;(x) <0, iem, xeR",

where the differentiable functions f,g; : R" — R, i € m, are invex with
respect to the same function n:R” x R" — R", the Karush-Kuhn-Tucker
necessary optimality conditions are also sufficient. The term invex (for
invariant convex) was coined by Craven [2] to signify the fact that the
invexity property, unlike convexity, remains invariant under bijective coor-
dinate transformations.

In a similar manner, one can readily define n-pseudoinvex and n-quasiin-
vex functions as generalizations of differentiable pseudoconvex and quasi-
convex functions.

The notion of invexity has been generalized in several directions. For
our present purposes, we shall need a simple extension of invexity, namely,
p-invexity which was originally defined in [§].

Let n be a function from X x X to R”, and let 4 be a real-valued differ-
entiable function defined on X.
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DEFINITION 2.2. The function 4 is said to be (strictly) (n, p)-invex at x*
if there exists p € R such that for each x € X,

h(x) = h(x*)(>) Z (VR(x*), n(x, x)) + pllx — x*||*.

DEFINITION 2.3. The function # is said to be (prestrictly) (n, p)-quasiinvex
at x* € X if there exists p € R such that for each x € X,

h(x)(<) Sh(x") = (VAGT), n(x, x*) £ —pllx —x*|%.

DEFINITION 2.4. The function % is said to be (strictly) (n, p)-pseudoinvex
at x* e X if there exists p € R such that for each x € X (x #x%),

(VR(x*), n(x,x*) = —pllx —x*|* = h(x)(>) Zh(x").

From the above definitions it is clear that if & is (n, p)-invex at x*, then
it is both (n, p)-quasiinvex and (n, p)-pseudoinvex at x*, if & is (5, p)-quas-
iinvex at x*, then it is prestrictly (n, p)-quasiinvex at x*, and if & is strictly
(n, p)-pseudoinvex at x*, then it is (5, p)-quasiinvex at x*.

In the proofs of the duality theorems, sometimes it may be more con-
venient to use certain alternative but equivalent forms of the above defini-
tions. These are obtained by considering the contrapositive statements. For
example, (1, p)-pseudoinvexity can be defined in the following equivalent
way: The function 4 is said to be (5, p)-pseudoinvex at x* if there exists
0 €R such that for each x € X,

h(x) <h(x*) = (Vh(x"), n(x, x*)) < —pllx —x*|%.

The concept of p-invexity has been extended in many ways, and various
types of generalized p-invex functions have been utilized for establishing a
variety of sufficient optimality criteria and duality relations for several clas-
ses of nonlinear programming problems. For more information about invex
functions, the reader may consult [1-4, 6, 10, 12, 14, 17], and for recent
surveys of these and related functions, the reader is referred to [9, 15].

In the remainder of this section, we recall a set of necessary efficiency
conditions for (P) given in [26] which will play an important role in the
construction and analysis of the dual problems that will be discussed
in this paper. We begin by introducing a consistent notation for vector
inequalities. For a, b €R™, the following order notation will be used: a =2b
if and only if a; =2 b; for all i em; a>b if and only if a; = b; for all i em,
but a#b; a>b if and only if a; > b; for all i em; and a ?b is the negation
of a>b.

Consider the multiobjective problem
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(P*) Minir)lflize Fx)=(Fi(x),..., Fy(x)),

where F;, i € p, are real-valued functions defined on the set X.

An element x° e X’ is said to be an efficient (Pareto optimal, nondominat-
ed, noninferior) solution of (P*) if there exists no x € X such that F(x) <
F(x°).

THEOREM 2.1 [26]. Let x* be a normal efficient solution of (P) (i.e., an
efficient solution of (P) at which a suitable constraint qualification holds) and
assume that the functions f;, gi,i€p, G, jeq, and Hy, ker, are differen-
tiable at x*. Then there exist u* €U, v* €RL, w*eR", a* eRY, ¥ eR™ i€
p, and y* eR", jegq, such that

P
> W D (Y f () + AT ¥ = Ny () [ Vg (") — BY 8]}

i=1

+Xq:v;’f[VGj(x*)+ny*j]+iw}:VHk(x*)=O, 2.1)
j=1 k=1
ViG; () +11Cix*lle] =0, jeq, 2.2)
le* M5y <1, 18" 50 <1, i€p, (2.3)
Iy i, S1. jegq. (2.4)
(@, Aix*) = Aix*la@y. (B, Bix*) =|Bix* o). i€p, (2.5
(y*, Cix*)=IICix*llejy.  Jj€q. (2.6)

where U={u e R :u>0,>"_ u; =1}, for each i €p, Ni(x*) = fi(x*) +
N Aix*laiy, Di(x*) = gi(x*) — ||1Bix*|lpi), and | - | is the dual of the norm
|- lla, that is, ||5||§=‘ma§l|(5,g)|_

The form and contents of the necessary efficiency conditions given in
the above theorem along with the semiparametric sufficient efficiency con-
ditions presented in [26] provide clear guidelines for formulating numerous
duality models for (P). The rest of this paper is devoted to investigating
various types of dual problems for (P).
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In the remainder of this paper, we shall assume that the functions
fi> &i» i€, Gj, J€4q, and Hy, ker, are differentiable on the open set X.

3. Duality Model 1

In this section, we consider a dual problem with a relatively simple con-
straint structure and prove weak, strong, and strict converse duality theo-
rems under (1, p)-invexity conditions. More general duality models for (P)
will be discussed in the subsequent sections.

Consider the following four problems:

I Maximize(fl(y)+”Aly”“(l) fp<y)+llApy||a<p>>
g M= IBwyley” " & = 11Bpyllep)
subject to
P

Y ud DIV fi(y) + Al @'1= N;([Vei(y) — Bf BT}

i=1

q r
+ ) ulVG; () +Cl v+ wiVH(») =0, (3.1
j=l1 k=1
q r
D vlGi +IC¥lle]+ D wiHi(v) 20, (32)
j=1 k=1
||Oli||;kz(,‘)§1» ||ﬁi||Z(,’)§l» i€£, (3.3)
||Vj||?(j)§1, JE€Yq, (3.4)
(@, Aiy)=llAiyllaiy, (B Biy)=1Biylse). i€p, (3.5)
(. Ciy)=ICiylle» J€q. (3.6)

yeX,ueU, veR{ weR o' eR" B eR"™ icp, y/eR"Y, jegq,
3.7)

where for each i € p, Ni(y) and D;(y) are as defined in Theorem 2.1;

HO) + Ay llaq) fo(¥)+ ”Apy”a(p)>
g1 = IBwloy” 7 gp(3) = 1By lloip)

(C) Maximize (
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subject to (3.2)—(3.7) and

p
(Dol £, + AT 1= N V&) — B B

i=1

£ V6,04 Ty 14 Y T H (). )20
j=1 k=1
for all x €F, (3.9)

where 7 is a function from X x X to R";

(DI) Maximize (f )+ (@l Ay) 00+ (a?, Apy>>

g1 — (B Biy) T gp(y)—(BP, Byy)

subject to

14
Y uil Dy (v, BIV fi(») + Al '] = N (v, )[Vei () — B B}

i=1

q r
-I-Zvj[VGj(y)+C]~Tyj]+2kaHk(y):0, (3.9)
j=1 k=1
q - r
D o[G0+ Ciy+ Y wiHi () 20, (3.10)
j=1 k=1
le' I3 <1 1B 1. iep, (3.11)
Iy’ ”C(j)— JE€Y. (3.12)

veX,ueU, UER?,_, weR, o eRY, ﬁieRmi, i€p, yjeR"f, j€q,
(3.13)

where for each i€ p, N7 (y,a) = f;(y) + (', A;y) and Dj(y, B) = gi(y) —
(B, Biy);

(DI) Maximize(fl(y)+<o‘l’A1y} fp(y)+<ot1’,Apy>)

s —(BLB1y) T g,(y)—(BP, B,y)
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subject to (3.10)—(3.13) and

p
(DD (v BV £i3) + AT '] = N (3. [V () — B B')

i=1

q r
+3 0 VG; 0 +CIy 1+ Y weVHi (), n(x, y)> >0 for all x€eF,
j=1 k=1
(3.14)

where 7 is a function from X x X to R".

_The structures of the first two problems designated above as (CI) and
(CI), which can be proved under appropriate (7, p)-invexity hypotheses to
be dual problems for (P), are based directly on the form and contents of
the necessary efficiency conditions of Theorem 2.1. This is, of course, the
standard method for constructing Wolfe-type dual problems. However, a
careful examination of the form and features of (CI) and (CI) (as well
as the proofs of the weak and strong duality theorems for (P)—(DI) given
below), will readily reveal the fact that the constraints (3.5) and (3.6) are
essentially superfluous and their omission will not invalidate the duality
relations between (P) and (CI), and (P) and (CI). More specifically, if (3.5)
and (3.6) are deleted and the remaining constraints of (CI) and (CI) are
modified accordingly, then one obtains the reduced versions (DI) and (DI).

Comparing (DI) and (DI), we see that (DI) is relatively more general
than (DI) in the sense that any feasible solution of (DI) is also feasible
for (DI), but the converse is not necessarily true. Furthermore, we observe
that (3.9) is a system of n equations, whereas (3.14) is a single inequal-
ity. Clearly, from a computational point of view, (DI) is preferable to (DI)
because of the dependence of (3.14) on the feasible set of (P).

Despite these apparent differences, however, it turns out that the state-
ments and proofs of all the duality theorems for (P)~(DI) and (P)~(DI) are
almost identical and, therefore, we shall consider only the pair (P)-(DI).
Similarly, it is easily seen that all of the duality theorems established for
(P)-(DI) can readily be altered and restated for (P)-(CI) and (P)—(CI).

For the sake of economy of space and expression, we shall use the follow-
ing list of symbols in the statements and proofs of our duality theorems:

Ai(x,a)zfi(x)—{—(oti,Aix), iEB,
Bi(x,B)=—gi(x)+ (B, Bix), i€p,
Ci(x,y)=G,;x)+(y’.Cjx), jegq,
Di(x, w) =wiHy(x), ker,
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Eix,y, 0, B)=D; (v, BLfi(x) + (o, Aix)]— NP (y, o) gi (x)
—(B'. Bix)], i€p,

q
Clx,v, )= _v,[G;(x)+(y!,C;x)],
j=1

Dlx,w) =Y wiHi(x),

k=1

p
E@,y,u, 0 B) =Y ui{D;(y, BILfi(x) + (&', Aix)] = NP (v, )i (x)

i=1

—(B', Bix)]},
q r
F,vw, y) =Y vi[G;x)+(y!, C;x)]+ > wiHi(x),
j=1 k=1

Jy(v)={jeq:v;>0} for fixed veRY,
K.(w)={ker:w;#0} for fixed weR",
a=(' a? ... a"),
B=(B'. % ... "),
y=0Lvh v,

In the sequel, we shall make frequent use of the well-known generalized
Cauchy inequality which is formally stated in the following lemma.

LEMMA 3.1 [7]. For each a,beR™, a’b< ||a|*|bll.

Throughout this paper, we assume that N°(y,«a) 20, D{(y,8)>0, i€ p,
for all y, a, and B such that (y,u, v, w,«, B, y) is a feasible solution of the
dual problem under consideration.

The next two theorems show that (DI) is a dual problem for (P).

THEOREM 3.1 (Weak Duality). Let x and z=(y,u,v,w,a, 8,y) be arbi-
trary feasible solutions of (P) and (DI), respectively, and assume that either
one of the following two sets of hypotheses is satisfied:

(@ () for each i€ p, Ai(-, ) is (n, pi)-invex and B;(-, B) is (n, p;)-invex
at vy,
(ii) for each jeJ,=J.(v), C;(-,y) is (n, pj)-invex at y;
(iii) for each k € K, = K (w), wHy is (n, px)-invex at y;
(V) S0 D (v, B+ NE G )il + 3 e, 03+ Yoy B 20;
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(b) The Lagrangian-type function L(-,y,u,v,w,a, ,y):X — R defined by

p
L(x,y,u,v,w,a, B,y) =y u{D;(y, B)Lfi(x) + (', Aix)]
i=1

—N? (v, @)[gi(x) — (B, Bix)]}

q r
+ Y VilGi) + (v, Cx)]+ ) wiHi(x)
j=1 k=1

is (n, 0)-pseudoinvex at y.

Then ¢(x) £ ¥ (z), where yr= @, ..., V) is the objective function of (DI).
Proof. (a) Keeping in mind that0 u > 0, v 2 0, N7(y,@) =2 0, and
D;(y,B)>0, i€ p, we have

14
Z uil{ Dy (v, BLSi (%) + [ Aixllaiy] = N (v, e)[gi (x) — 1 Bixllpi) I}
i=1

14
= uid D} (v, B0 + 1 Aixllagy — L) — (o, Aiy)])

i=1

—N; (v, 0){gi(x) — | Bixllpoy — [g: () — (B, Biy)}}
(by the definitions of N7 (y,«) and D;(y, B), i € p)

p
>3 " wild DY (v, B (0 + Ml (1) I Aix o]
i=1

=N (y, a)[gi(x) — ||,3i“Z(i)“Bix||b(i)] — D} (y, BLfi(y) + (o, Aiy)]
+N; (v, )[gi (y) — (B, B;y)]} (by (3.11))

2 ul{D:(y, P (x) + (o, Aix) —[fi(0) + (&', Aiy)]}

-

i=1
—N? (v, @){gi(x) — (B', Bix) —[gi(y) — (B, Biy)]}}
(by Lemma 3.1)

> " wi {((DF (y, BV fi(y) + AT ']

-

i=1

—N (v, )[Vgi(y) — B! B'l,n(x, y)) +[D; (v, B)p;
+N7 (v, ) pilllx — ylIPY (by (i)
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q
(YT, + CT 1+ Y Y H G . )

j=1 k=1

p
+ > wilD{ (v, B)pi + NP (v, )@l = yII (by (3.9))
i=1

q
22 G+, Ciy) =[G, x)+ (v Cx]}+Zwka<y>
j=1 k=1

P r
(DD, B+ Ny 0 )pil+ 3 v+ 3 ) Ix = 1P
i=1 jedy k=1
(by (i), (iii), and primal feasibility of x)
q q
= G+ Y I ICx ]+ D vi[G () + (v, Cjy)]
j=1 j=1

+> wiHi(y) (by (iv) and Lemma 3.1)

k=1

q
Zv,[G X +IC)xllen]+ Y vilG )+ (7, €]
j=1

j=1

£3 we b () (by (3.12)

k=1

q
§Zv,[G )+ (7, Cy)] +Zwka<y>
Jj= k=1
(by the primal feasibility of x).

In view of (3.10), the above inequality reduces to

p

Z ui{D; (v, BLSi(0) + 1 Aixllaiy] = N (v, e)lgi (x) — | Bix[lpi) ]} 2 0.
i=1
(3.15)

Since u >0, (3.15) implies that

(D‘f(y, AL (X) + | Arxllay] = Ny (v, 9[g1(x) — [ Bix o], - - -

D;(y, ﬂ)[fp(x) + ”Apx”a(p)] - N;(y’ a)[gp(x) - ”Bpx”b(p)])

£(0,...,0),
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which, in turn, implies that

(p(x):(fl(x)+||A1x||a(l) fp(x)+||Apx||a(p)>
gix) = 1Bixlsay " gp(x) = 1Bpxllnp)

fi)+ (!, Ary) fp(y)—‘—(ap’Apy))_
;( (gl(y)_<ﬂl,B1y>’ ’ gp(y)_(ﬁp’pr> _W(Z)

(b) From our (n,0)-pseudoinvexity assumption and (3.9) it follows
that L(x, y,u,v,w,a, B,y) = L(y, y,u,v,w,a, B,y). In view of (3.10) and
primal feasibility of x, this inequality reduces to

p
> uiD; (v, B () + (o', Aix)]— NP (v, 0)[gi (x) — (B, Bix)]}
i=1

q
+ > 0i[G(x) + (v, Cx)]20.
j=1

Using this inequality and bearing in mind that u >0, v=0, N°(y,a) 20,
and D;(y,B) >0, i€ p, we see that

P
0= Z uil{ D} (v, BILfi ) + ! 50 1 Aix iy ] = N7 (v, e0)[gi (x)

q
~1B 5 I Bixlloy I} + Y v;[G(x)
j=1

+||)/j||f(j)||C-x||L(j>] (by Lemma 3.1)

§Zu {D; (v, B () + NN Aixllay] = N (v, )8 (x) — [ Bix [loi) I}

i[Gj () +Cjxllepy] (by (3.11) and (3.12))

I| MQ

P
= Z ui{D; (y, BLfi (x) + 1 Aixllah] = N7 (v, )[8: (x) — | Bix llpi) I}
i=1
(by the primal feasibility of x),

which is (3.15), and hence the rest of the proof is identical to that of part
(a). O

THEOREM 3.2 (Strong Duality). Let x* be a normal efficient solution of
(P) and assume that either one of the two sets of conditions specified in
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Theorem 3.1 is satisfied for all feasible solutions of (DI). Then there exist
u*eU, v* E]Ri, w*eR", o eRY, B eR™,iep, and y* eR"Y, jegq,
such that z* = (x*, u*, v*, w*, a*, B*, y*) is an efficient solution of (DI) and
p(x*) =Y (z").

Proof. Since x* is a normal efficient solution of (P), by Theorem 2.1, there
exist u*, v*, w*, a*, B*,icp, and y*/, j €q, as specified above, such that z*
is a feasible solution of (DI). If it were not efficient, then there would exist a

Y (z*) =¢(x*) and hence w(z) > go(x*), which contradicts Theorem 3.1. There-
fore, we conclude that z* is an efficient solution of (DI). O

We also have the following converse duality result for (P)—(DI).

THEOREM 3.3 (Strict Converse Duality) Let x* be an efficient solution of

@ {D; (X, LS () + I Aix* o] = NP (&, @)[gi (x*) = | Bix™ o) [} £ 0.

i M'u

(3.16)

Furthermore, assume that either one of the following two sets of hypotheses
is satisfied:

(a) The assumptions of part (a) of Theorem 3.1 are satisfied for the feasi-
ble solution 7 of (DI) and A;(-,&) is strictly (n, p;)-invex at X for at
least one index i € p, or B, (-, /§) is strictly (n, p;)-invex at x for at least
one index i € p, or C;(,y) is strictly (n, p;)-invex at X for at least one
index j €q with the corresponding component v; of v positive, or Wy Hy
is strictly (n, pp)-invex at % for at least one index k € K, (%), or

p
Za D} (%, B + N (&, a)pl]+Zv,p,+Zpk>o

jeds k=1

(b) The assumptions of part (b) of T heorem 3.1 are satisﬁed for the feasi-

(n, 0)-pseudoinvex at X.

Then x =x*, that is, X is an efficient solution of (P), and ¢(x*) =y (2).

Proof. (a) Suppose to the contrary that x #x*. Now proceeding as in the
proof of Theorem 3.1 (with x replaced by x* and z by Z) and using any of
the conditions set forth above, we arrive at the strict inequality

@i { D7 (%, LS (%) + [ Aix* la@y] = N (%, @)[gi (6*) = | Bix* 5o ]} > 0,

i Mm
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which contradicts (3.16). Therefore, we conclude that x =x* and ¢(x*) =
¥ (2).
(b) The proof is similar to that of part (a). O

4. Duality Model 11

In this section, we consider certain variants of (CI), (CI), (DI), and (DI)
that allow for a greater variety of generalized (5, p)-invexity conditions
under which duality can be established. These duality models have the fol-
lowing forms:

g = IBiylsay” 7 gp() = 1IByyllep)
subject to (3.1), (3.3)~(3.7), and

vilG; M+ ICylep]20, Jjeg, “4.1)
wiHy(y) 20, ker; 4.2)
. A1y|la Apylla
g1(y) = l1B1yllvq) gr(Y) = IBpy o

subject to (3.3)—(3.8), (4.1), and (4.2);

(D) Maximize (f M+ Ay O+ Apy>>

g1()— (B Biy)" " g,(y)—(BP, Bpy)

subject to

p
Y uil Dy, IV () + Al a1 = N (v, )[Vei () — B 8]}

i=1

q r
+D v[VG; M+ CTy 1+ Y wiVH(y) =0, (4.3)
j=1 k=1
v[G; 0+ (¥, Ciy20, jegq, (4.4)
weHi (y) 20, ker, 4.5)

lloe’ ||Z(,‘) =1, ||/31 ”Z(,‘) <1, i ep, (4.6)
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Iy’ Ik, <1, jegq. (4.7)

yeX, ueU,veR?, weR", o' eRY, g eR™, i€p, v/ eRM, j€q;
(4.8)

(DI Maximize (f L)+ (@A) )+ (a”, Am)

i) — (B Biy)" " g,(y)—(BP, Bpy)

subject to (3.14) and (4.4)-(4.8).

The remarks and observations made earlier about the relationships
among (CI), (CI), (DI), and (DI) are, of course, also valid for (CII), (CII),
(DII), and (DII). As in the preceding section, we shall work with the
reduced versions (DII) and (DII), and, in particular, consider the pair
(P)~(DII).

As will be demonstrated throughout this section, duality for (P)-(DII)
can be proved under a great variety of generalized (7, p)-invexity hypothe-
ses. Our first collection of weak duality results is given in the next theorem
in which separate (1, p)-invexity conditions are imposed on the functions
A;(-,a) and B;(-, B), i € p.

THEOREM 4.1 (Weak Duality). Let x and z=(y,u,v, w,a, 8,y) be arbi-
trary feasible solutions of (P) and (DII), respectively, and assume that any
one of the following five sets of hypotheses is satisfied:

(@ () for each i € p, Ai(-,a) is (n, pi)-invex and B;(-, B) is (n, pi)-invex
at y,;
(ii) for each jeJy =Jy(v), Ci(-,y) is (n, pj)-quasiinvex at 'y,
(iii) for each k € K, = K, (w), Dy (-, w) is (n, or)-quasiinvex at y,
(V) p* + X ey, Vidj + Lek, Pr 2 0. where p* =377 1 ui[D; (. B)pi +
N,'O(y, O[)/Oi];
(d) (1) for each i €p, A (-, ) is (n, pi)-invex and B; (-, B) is (n, p;)-invex
at y,;
(i1) C(-,v,y) is (n, p)-quasiinvex at y;,
(iii) for each k€ K., Di(-, w) is (n, pr)-quasiinvex at y;
(V) p*+ P+ yek, Pk 20;
(©) () for eachie€p, Ai(-,a) is (n, pi)-invex and B;(-, B) is (n, pi)-invex at
Yy
(i) for each jeJi, Ci(-,y) is (n, pj)-quasiinvex at y;
(iii)) D, w) is (n, p)-quasiinvex at y,
W) p*+ s, 08 +5Z0;
(d) () foreachie p, A;i(-, &) is (n, pi)-invex and B; (-, B) is (n, pi)-invex at y;
(i1) C(-, v, y) is (n, p)-quasiinvex at y;
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(iii)) D, w) is (n, p)-quasiinvex at y;
(iv) p*+p+p20;
() (1) for each i €p, A, ) is (n, pi)-invex and B;(-, B) is (n, p;)-invex
at y;
(i1) F(, v, w,y) is (n, p)-quasiinvex at y;
(ii)) p*+p20;
Then ¢(x) £0(z), where 0=(0), ... ,0,) is the objective function of (DII).
Proof. (a) Since for each jeJ,,

Gi(x)+ (. Cix) SG;(x)+ 1y’ 15, IICjxlle¢j) (by Lemma 3.1)
SG;(x)+Cixlle (by (4.7)
<0 (since x €F)
SG; ) +{r’, Ciy); (by (44)),

in view of (ii) we have
(VG;(M+CTyl n(x, y)) < —pillx—ylI>.

As v; 20 for each jeg, and v; =0 for each jegq\J; (complement of J,
relative to g), the above inequalities yield

<Z v[VG;(»)+Cly/]n(x, y)> =D b=yl (4.9)
j=l1 JjeJy
In a similar manner we can show that (iii) leads to the following inequality:
<Z VweH(y), n(x, y>> <=3 dllx -yl (4.10)
k=1 keK,

Bearing inmind thatu >0, v=0, N7 (y,®) 20,and D;(y, B) >0, i € p, we have

p
> uid DY (v, B ) + 1 Aix ] — Ny (v, @)[gi () = | Bix i ]}
i=1 ) |
23wl DY (v, B (0 + Ml (1) I Aix laco]
i=1
—N7 (v, )8 (¥) = 1850, | Bix o]} (by (4.6))
p
2wl DY (y, B (0) + (o, Apx)]

i=1
—N7(y, )[gi (x) — (B!, B;x)]} (by Lemma 3.1)
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.

ui{D; (y, B fi () + (&, Aix) — [ /i () + (&', Aiy)]}
i=1

— N7 (v, @){gi(x) — (B', Bix) —[g:(y) — (B', Biy)]}}
(by the definitions of N7 (y,«) and D7 (y, B), ieB)

2> ui{{D;(y, DIV fi(y)+ Al &' 1= NP (v, 0)[Vgi (y) — B! B'], n(x, )

&Mw

i

+[D; (y, B)pi + N7 (y, Ot)p,]llx—yll } (by (i)

MQ

[D
Zul D;(y, B)fi + N7 (v, ) p]llx — ylI* (by (4.3))

=1

(p + Db+ Y A )lx =yl (by (49) and (4.10)

jeds keK,

20 (by (iv)).

WIYG, )+ 1+ Y W (0). e, )
1 k=1

““T

1\

As shown in the proof of Theorem 3.1, this inequality leads to the desired
conclusion that ¢(x) £ 60(2).

(b) As shown in part (a), for each j € J;, we have G;(x)+ (y/,C;x) <
G;(y)+(y’,C;y) and hence

q q
Y G0+ (v, Cjx) ng,[G OEZNe
j=1 j=1

which in view of (ii) implies that

q
<Z v;[VG;(»)+C] vl n(x, y)> <—pllx—yl*.

j=1

Now proceeding as in the proof of part (a) and using this inequality
instead of (4.9), we arrive at the conclusion that ¢(x) £6(z).
(c)—(e): The proofs are similar to those of parts (a) and (b). O

THEOREM 4.2 (Strong Duality). Let x* be a normal efficient solution of
(P) and assume that any one of the five sets of conditions set forth in
Theorem 4.1 is satisfied for all feasible solutions of (DII). Then there exist
uwelU, v eRY, w*eR", o eRY, B eR™ i€ p, and y* eRY, jeq,
such that z*= (x*,u*, v*, w*, a*, B*, y*) is an eﬁ?cieTat solution of (DII) and
Pp(x*)=0(z").
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Proof- The proof is similar to that of Theorem 3.2. O

THEOREM 4.3 (Strict Converse Duality). Let x* be an efficient solution of
(P) and let Z=(x, A, i, v, w, &, B,y) be a feasible solution of (DII) such that

p
S D7, DL + 1 Aixllay] — N @i () — 1 Bixllo ]} 0.
i=1
@.11)

Furthermore, assume that any one of the following five sets of conditions is
satisfied:

(a) The assumptions specified in part (a) of Theorem 4.1 are satisfied for
the feasible solution 7 of (DII) and A;(-,@) is strictly (n, p;)-invex at
X for at least one i € p, or B;(-, B) is strictly (n, p;)-invex at % for at
least one i € p, or C]T-,)?) is strictly (n, pj)-pseudoinvex at x for at
least one j € J_Jr(ﬁj), or Diy(-, w) is strictly (n, pr)-pseudoinvex at x for
at least one k € K. (), or p*+ Zjeh Vipj+ D rek. Px >0, where p* =
Yol w[ Dy (R, B)pi + NP (%, @) fi]

(b) The assumptions specified in part (b) of Theorem 4.1 are satisfied for
the feasible solution 7 of (DII) and A;(-, ) is strictly (n, p;)-invex at X
for at least one i € p, or B;(-, B) is strictly (n, p;)-invex at x for at least
one i €p, or C(-,0,y) is strictly (n, p)-pseudoinvex at X, or Di(-, W) is
strictly (n, px)-pseudoinvex at X for at least one k € K, (W), or p*+p +
Zkel(* Pr > 0.

(c) The assumptions specified in part (c) of Theorem 4.1 are satisfied for
the feasible solution 7 of (DII) and A;(-, @) is strictly (n, p;)-invex at
X for at least one i € p, or B;(-, B) is strictly (n, p;)-invex at % for at
least one i € p, or C;(-, y) is strictly (n, p;)-pseudoinvex at X for at least
one j e J+(57), or D(-,w) is strictly (n, p)-pseudoinvex at x, or p*+
2jes, ViPj+p>0.

(d) The assumptions specified in part (d) of Theorem 4.1 are satisfied for the
feasible solution 7 of (DII) and A;(-, &) is strictly (n, p;)-invex at x for
at least one i € p, or B;i(-, B) is strictly (n, p;)-invex at X for at least one
iep, or C(-,0,y) is strictly (n, p)-pseudoinvex at X, or D(-, W) is strictly
(n, p)-pseudoinvex at %, or p*+ p+p>0.

(e) The assumptions specified in part (€) of Theorem 4.1 are satisfied for the
feasible solution z of (DII) and A;(-, &) is strictly (n, p;)-invex at x for
at least one i € p, or B;i(-, B) is strictly (n, p;)-invex at X for at least one
iep, or F(-,0,w,y) is strictly (n, p)-pseudoinvex at X, or p*+p>0.

Then x =x* and ¢(x*)=0(X).
Proof- The proof is similar to that of Theorem 3.3. O
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In Theorem 4.1, separate (n, p)-invexity assumptions were imposed on the
functions A; (-, «) and B; (-, B), i € p. In the remainder of this section, we shall
formulate several duality results in which various generalized (17, p)-invexity
requirements will be placed on certain combinations of these functions.

THEOREM 4.4 (Weak Duality). Let x and z=(y,u,v,w,«, B,y) be arbi-
trary feasible solutions of (P) and (DII), respectively, and assume that any
one of the following five sets of hypotheses is satisfied:

(a)

(b)

(©)

(d)

(©)

1) EC,y,u,a,B) is (n, p)-pseudoinvex at y;
(i) for each jeJ,=J.(v), Ci(-,y) is (n, pj)-quasiinvex at 'y,
(iii) for each k € K, = K. (w), Dy (-, w) is (n, px)-quasiinvex at y;,
(iV_) p+ Zjej+ Vipj+ ke, Pk 2 0;
1) EC,y,u,a,p) is (n, p)-pseudoinvex at y;
(i1) C(-, v, y) is (n, p)-quasiinvex at y;,
(iii) for each k € K., Dy (-, w) is (n, pr)-quasiinvex at y;
(V) 5+p+ ek, i 20;
(1) EC,y,u,a, p) is (n, p)-pseudoinvex at y,
(ii) for each jeJi, C;(-,y) is (n, pj)-quasiinvex at y;
(@ii) D(,w) is (n, p)-quasiinvex at y;
(IV) o+ Zj€J+ Vipj +p é 0;
1) EC,y,u,a,p) is (n, p)-pseudoinvex at y;
(i1) C(-, v, y) is (n, p)-quasiinvex at y;,
(iii)) D, w) is (n, p)-quasiinvex at y;,
(iv) p+p+p20;
1) EC,y,u,a,B) is (n, p)-pseudoinvex at y;
(i1) F(,v,w, y) is (n, p)-quasiinvex at y;
(i) p+520.

Then ¢(x) £0(2).
Proof. (a) Combining (4.3) with (4.9) and (4.10), which are valid for the
present case due to our assumptions in (ii) and (iii), and using (iv), we obtain

)4
<Zu,-{D?(y, BIV f;(0) + Al o'1= N7 (v, )[ Vi (v) — B BT}, n(x, y>>

i=1

> S vis+ > b | I =yIPZ—plx — 1%,

jeds keK,

which in view of (i) implies that E(x, y,u,a, B) ZE(y, y, u,a, B) =0, where
the equality follows from the definitions of N;7(y,«) and Dj(y,B), i € p.
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Now using this inequality and keeping in mind that u >0, N7(y,«) 20 and
D;(y,B)>0,i€p, we have

0= ) wil D7 (v, BLfi0) + (@', Aix)] = NP (3, e)[gi (x) — (B, Bix)])

Il
-

-

S Xp:ui{l)?(y, BLS (o) + ller' I
lX:ﬁAix“a(i)] — N7 (v, )[gi (x) = 18Il I Bixllno)]} (by Lemma 3.1)
= Zp:ui{Df(y, AL () + 1 Aixllaiy] = N7 (v, @)[gi (x) = | Bixlloi) ]}
(lk:)}l/ (4.6)).

As shown in the proof of Theorem 3.1, this inequality leads to the desired
conclusion that ¢(x) £ 6(2).
(b)—(e) The proofs are similar to that of part (a). O

THEOREM 4.5 (Weak Duality). Let x and z=(y,u,v,w,«, B,y) be arbi-
trary feasible solutions of (P) and (DII), respectively, and assume that any
one of the following twelve sets of hypotheses is satisfied:

(a)

(b)

(©)

(d)

()

1) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y;
(ii) for each jeJy=Ji(v), Ci(-,y) is (n, pj)-quasiinvex at y;
(iii) for each k € K, = K. (w), Dy (-, w) is (n, pr)-quasiinvex at y;,
(V) P+ s, Vibj+ 2iek, Pr>0;
1) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y,
(1) C(-,v,y) is (n, p)-quasiinvex at y;
(i.ii) f_or each k€ K, Dy(.,w) is (n, pr)-quasiinvex at y,
(V) P+ 0+ pek, Pk >0;
(1) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y;
(i) for each jeJi, Ci(-,y) is (n, pj)-quasiinvex at y;
(iii)) D(-, w) is (n, p)-quasiinvex at y;
(V) p+D ey, vibj+p>0;
(1) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y,
(i1) C(-, v, y) is (n, p)-quasiinvex at y;,
(iii) D(-, w) is (n, p)-quasiinvex at y;
(iv) p+p+p>0;
(1) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y;
(1) F(,v,w,y) is (n, p)-quasiinvex at y,
(i) p+p>0;
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® Q) EC,y,u,a,p) is prestrictly (n, p)-quasiinvex at y;
(ii) for each jeJy, C;(-,y) is strictly (n, pj)-pseudoinvex at 'y,
(iii) for each k € K., Di(-, w) is (n, pr)-quasiinvex at y;
i) p+ Zjej+ ViDj+ D kek, Pk 2 0;
(g) ) EC,y,u,a,B) is prestrictly (n, p)-quasiinvex at y;,
(1) C(-, v, y) is strictly (n, p)-pseudoinvex at y;
(iii) for each k € K., Di(-, w) is (n, pr)-quasiinvex at y;
(V) p+p+ 3 hek, P =0;
(h) ) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y;
(ii) for each jeJy, C;(-,y) is (n, pj)-quasiinvex at y;
(iii) for each k € K, Di(-, w) is strictly (n, Or)-pseudoinvex at y,
(V) P+ ey, Vil + Dkek, Pk 20
1 ) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y,
(ii) for each jeJy, C;(-,y) is (n, pj)-quasiinvex at y;
(iii) D(-, w) is strictly (n, p)-pseudoinvex at y;
(iv) p+ Zjeh vipj+p20;
G @) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y,
(i1) C(-, v, y) is strictly (n, p)-pseudoinvex at y;
(iii) D(-, w) is (n, p)-quasiinvex at y;
(iv) p+p+p20;
&) @) EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y;
(i1) C(-, v, y) is (n, p)-quasiinvex at y;
(ii1) D(-, w) strictly (n, p)-pseudoinvex at y;
(iv) p+p+p20;
@D @ EC,y,u,a, B) is prestrictly (n, p)-quasiinvex at y,;
(1) F(, v, w,y) is strictly (n, p)-pseudoinvex at y;
(i) p+p=0.
Then ¢(x) £0(2).
Proof. (a) Because of our assumptions specified in (i) and (iii), (4.9) and
(4.10) remain valid for the present case. From (4.3), (4.9), (4.10), and (iv)
we deduce that

p
<Zu,-{D;<y, BIV fi(y) + Al &' = N7 (v, 0)[Vgi(y) — B] BT}, n(x, y>>
i=1

2 > v+ Y s | Ix—yIP>—pllx =yl
jedy kekK,

which in view of (i) implies that E(x, y,u,a, B) ZE(y, y, u,a, B) =0, where
the equality follows from the definitions of N7(y,«) and D;(y, B), i € D As
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shown in the proof of Theorem 4.4, this inequality leads to the conclusion
that ¢(x) £0(2).

(b)—(e) The proofs are similar to that of part (a).

(f) As shown in the proof of part (a) of Theorem 4.1, for each je J,,
we have G;(x)+ (y’/, C;x) <G ;(y)+ (y’, C,y), which by (ii) implies that

(VG;(M+CTyl n(x,y) <—p;llx =yl

As v; =0 for each jegq, and v; =0 for each jeq\J;, the above inequalities
yield

q
<Zv,-[VG<,-<y>+C,Tyf], n(x, y)> <= vipjllx =yl

j=1 jely

Now combining this inequality with (4.10) (which is valid for the present
case because of (iii)) and (4.3), and using the primal feasibility of x and
(iv), we obtain

i=1

(X vihi+ Y A=yl Z e~y I,

jely k